A Quote by Rene Thom

The purely formal language of geometry describes adequately the reality of space. We might say, in this sense, that geometry is successful magic. I should like to state a converse: is not all magic, to the extent that it is successful, geometry?
The concept of congruence in Euclidean geometry is not exactly the same as that in non-Euclidean geometry. ..."Congruent" means in Euclidean geometry the same as "determining parallelism," a meaning which it does not have in non-Euclidean geometry.
Analytical geometry has never existed. There are only people who do linear geometry badly, by taking coordinates, and they call this analytical geometry. Out with them!
I am coming more and more to the conviction that the necessity of our geometry cannot be demonstrated, at least neither by, nor for, the human intellect. . . Geometry should be ranked, not with arithmetic, which is purely aprioristic, but with mechanics.
Metrical geometry is thus a part of descriptive geometry, and descriptive geometry is all geometry.
I conceived, developed and applied in many areas a new geometry of nature, which finds order in chaotic shapes and processes. It grew without a name until 1975, when I coined a new word to denote it, fractal geometry, from the Latin word for irregular and broken up, fractus. Today you might say that, until fractal geometry became organized, my life had followed a fractal orbit.
Abstraction didn't have to be limited to a kind of rectilinear geometry or even a simple curve geometry. It could have a geometry that had a narrative impact. In other words, you could tell a story with the shapes. It wouldn't be a literal story, but the shapes and the interaction of the shapes and colors would give you a narrative sense. You could have a sense of an abstract piece flowing along and being part of an action or activity. That sort of turned me on.
In fact, Gentlemen, no geometry without arithmetic, no mechanics without geometry... you cannot count upon success, if your mind is not sufficiently exercised on the forms and demonstrations of geometry, on the theories and calculations of arithmetic ... In a word, the theory of proportions is for industrial teaching, what algebra is for the most elevated mathematical teaching.
Geometry enlightens the intellect and sets one's mind right. All of its proofs are very clear and orderly. It is hardly possible for errors to enter into geometrical reasoning, because it is well arranged and orderly. Thus, the mind that constantly applies itself to geometry is not likely to fall into error. In this convenient way, the person who knows geometry acquires intelligence.
The best that Gauss has given us was likewise an exclusive production. If he had not created his geometry of surfaces, which served Riemann as a basis, it is scarcely conceivable that anyone else would have discovered it. I do not hesitate to confess that to a certain extent a similar pleasure may be found by absorbing ourselves in questions of pure geometry.
The full impact of the Lobachevskian method of challenging axioms has probably yet to be felt. It is no exaggeration to call Lobachevsky the Copernicus of Geometry [as did Clifford], for geometry is only a part of the vaster domain which he renovated; it might even be just to designate him as a Copernicus of all thought.
Geometry, like arithmetic, requires for its logical development only a small number of simple, fundamental principles. These fundamental principles are called the axioms of geometry.
The description of right lines and circles, upon which geometry is founded, belongs to mechanics. Geometry does not teach us to draw these lines, but requires them to be drawn.
Fractions, decimals, algebra, geometry, trigonometry, calculus, mechanics - these are the steps up the mountain side. How high is one going to get? For me, the pinnacle was Projective Geometry. Who today has even heard of this branch of mathematics?
A pool at the edge of the ocean is the simplest geometry, yet you feel connected to the sea. In a forest with the mountains in the background, you also feel the connection to nature, yet it's a very complex geometry. I think architecture is about controlling these feelings.
I love making object form; I wish I was doing more of it. I admire the research of my colleagues, and sometimes it makes me sad when their beautiful work - the deep dives into formal research and nuances of geometry and so on - ends up circling in more and more circumscribed contexts. I wish they were more powerful. It's not a modern proposition. Active form doesn't kill object form. I want my students to have all those skills related to geometry, shape, measure, scale, etc., plus skills for using space to manipulate power in the world.
. . . by natural selection our mind has adapted itself to the conditions of the external world. It has adopted the geometry most advantageous to the species or, in other words, the most convenient. Geometry is not true, it is advantageous.
This site uses cookies to ensure you get the best experience. More info...
Got it!