A Quote by Volodymyr Zelensky

Politics is not an exact science. That's why in school I loved mathematics. Everything in mathematics was clear to me. — © Volodymyr Zelensky
Politics is not an exact science. That's why in school I loved mathematics. Everything in mathematics was clear to me.
If you ask ... the man in the street ... the human significance of mathematics, the answer of the world will be, that mathematics has given mankind a metrical and computatory art essential to the effective conduct of daily life, that mathematics admits of countless applications in engineering and the natural sciences, and finally that mathematics is a most excellent instrumentality for giving mental discipline... [A mathematician will add] that mathematics is the exact science, the science of exact thought or of rigorous thinking.
Mathematics has two faces: it is the rigorous science of Euclid, but it is also something else. Mathematics presented in the Euclidean way appears as a systematic, deductive science; but mathematics in the making appears as an experimental, inductive science. Both aspects are as old as the science of mathematics itself.
Mathematics is the most exact science, and its conclusions are capable of absolute proof. But this is so only because mathematics does not attempt to draw absolute conclusions. All mathematical truths are relative, conditional. In E. T. Bell Men of Mathematics, New York: Simona and Schuster, 1937.
But there is another reason for the high repute of mathematics: it is mathematics that offers the exact natural sciences a certain measure of security which, without mathematics, they could not attain.
Mathematics is often defined as the science of space and number . . . it was not until the recent resonance of computers and mathematics that a more apt definition became fully evident: mathematics is the science of patterns.
I like science and mathematics. When I say mathematics, I don't mean algebra or math in that sense, but the mathematics of things.
The subject for which I am asking your attention deals with the foundations of mathematics. To understand the development of the opposing theories existing in this field one must first gain a clear understnding of the concept "science"; for it is as a part of science that mathematics originally took its place in human thought.
The world is colors and motion, feelings and thoughts and what does math have to do with it? Not much, if 'math' means being bored in high school, but in truth mathematics is the one universal science. Mathematics is the study of pure pattern and everything in the cosmos is a kind of pattern.
In fact, the answer to the question "What is mathematics?" has changed several times during the course of history... It was only in the last twenty years or so that a definition of mathematics emerged on which most mathematicians agree: mathematics is the science of patterns.
We had principles in mathematics that were granted to be absolute in mathematics for over 800 years, but new science has gotten rid of those absolutism, gotten forward other different logics of looking at mathematics, and sort of turned the way we look at it as a science altogether after 800 years.
Mystery is an inescapable ingredient of mathematics. Mathematics is full of unanswered questions, which far outnumber known theorems and results. It's the nature of mathematics to pose more problems than it can solve. Indeed, mathematics itself may be built on small islands of truth comprising the pieces of mathematics that can be validated by relatively short proofs. All else is speculation.
Roger Bacon, a disciple of the Arabs, also insisted on the primary necessity of Mathematics, without which no other science can be known; yet by Mathematics it is clear that he meant something very different from what we mean, including under that head even dancing, singing, gesticulation, and performance on musical instruments.
We in science are spoiled by the success of mathematics. Mathematics is the study of problems so simple that they have good solutions
We in science are spoiled by the success of mathematics. Mathematics is the study of problems so simple that they have good solutions.
May not music be described as the mathematics of the sense, mathematics as music of the reason? The musician feels mathematics, the mathematician thinks music: music the dream, mathematics the working life.
Mathematical thinking is not the same as doing mathematics - at least not as mathematics is typically presented in our school system. School math typically focuses on learning procedures to solve highly stereotyped problems. Professional mathematicians think a certain way to solve real problems, problems that can arise from the everyday world, or from science, or from within mathematics itself. The key to success in school math is to learn to think inside-the-box. In contrast, a key feature of mathematical thinking is thinking outside-the-box - a valuable ability in today's world.
This site uses cookies to ensure you get the best experience. More info...
Got it!