A Quote by Brian Greene

General relativity is in the old Newtonian framework where you predict what will happen, not the probability of what will happen. And putting together the probabilities of quantum mechanics with the certainty of general relativity, that's been the big challenge and that's why we have been excited about string theory, as it's one of the only approaches that can put it together.
String theory is the most developed theory with the capacity to unite general relativity and quantum mechanics in a consistent manner. I do believe the universe is consistent, and therefore I do believe that general relativity and quantum mechanics should be put together in a manner that makes sense.
In quantum mechanics there is A causing B. The equations do not stand outside that usual paradigm of physics. The real issue is that the kinds of things you predict in quantum mechanics are different from the kinds of things you predict using general relativity. Quantum mechanics, that big, new, spectacular remarkable idea is that you only predict probabilities, the likelihood of one outcome or another. That's the new idea.
One of the main successes of string theory is that it has been able to unify the general theory of relativity, which describes gravity, and quantum mechanics.
Einstein was searching for String Theory. It not only reconciles General Relativity to Quantum Mechanics, but it reconciles Science and the Bible as well.
While the finish given to our picture of the world by the theory of relativity has already been absorbed into the general scientific consciousness, this has scarcely occurred to the same extent with those aspects of the general problem of knowledge which have been elucidated by the quantum theory.
Combining quantum entanglement with wormholes yields mind boggling results about black holes. But I don't trust them until we have a theory of everything which can combine quantum effects with general relativity. i.e. we need to have a full blown string theory resolve this sticky question.
Most of what Einstein said and did has no direct impact on what anybody reads in the Bible. Special relativity, his work in quantum mechanics, nobody even knows or cares. Where Einstein really affects the Bible is the fact that general relativity is the organizing principle for the Big Bang.
Should a priest reject relativity because it contains no authoritative exposition on the doctrine of the Trinity? Once you realize that the Bible does not purport to be a textbook of science, the old controversy between religion and science vanishes . . . The doctrine of the Trinity is much more abstruse than anything in relativity or quantum mechanics; but, being necessary for salvation, the doctrine is stated in the Bible. If the theory of relativity had also been necessary for salvation, it would have been revealed to Saint Paul or to Moses.
When general relativity was first put forward in 1915, the math was very unfamiliar to most physicists. Now we teach general relativity to advanced high school students.
My opinion about Miller's experiments is the following. ... Should the positive result be confirmed, then the special theory of relativity and with it the general theory of relativity, in its current form, would be invalid. Experimentum summus judex. Only the equivalence of inertia and gravitation would remain, however, they would have to lead to a significantly different theory.
The Theory of Relativity confers an absolute meaning on a magnitude which in classical theory has only a relative significance: the velocity of light. The velocity of light is to the Theory of Relativity as the elementary quantum of action is to the Quantum Theory: it is its absolute core.
Typically in science, individual scientists make up their minds about scientific fact or theory one at a time. We don't take votes. We just don't vote on quantum mechanics, the theory of relativity, why the sky is blue, or anything else.
The most important single thing about string theory is that it's a highly mathematical theory, and the mathematics holds together in a very tight and consistent way. It contains in its basic structure both quantum mechanics and the theory of gravity. That's big news.
The math of quantum mechanics and the math of general relativity, when they confront one another, they are ferocious antagonists and the equations don't work.
Quantum field theory, which was born just fifty years ago from the marriage of quantum mechanics with relativity, is a beautiful but not very robust child.
One of the most exciting things about dark energy is that it seems to live at the very nexus of two of our most successful theories of physics: quantum mechanics, which explains the physics of the small, and Einstein's Theory of General Relativity, which explains the physics of the large, including gravity.
This site uses cookies to ensure you get the best experience. More info...
Got it!