A Quote by Ian Hacking

Among the lesser effects of quantum theory are gaping holes in old ideas about causality. — © Ian Hacking
Among the lesser effects of quantum theory are gaping holes in old ideas about causality.
Combining quantum entanglement with wormholes yields mind boggling results about black holes. But I don't trust them until we have a theory of everything which can combine quantum effects with general relativity. i.e. we need to have a full blown string theory resolve this sticky question.
I wouldn't have thought that a wrong theory should lead us to understand better the ordinary quantum field theories or to have new insights about the quantum states of black holes.
I have tried to read philosophers of all ages and have found many illuminating ideas but no steady progress toward deeper knowledge and understanding. Science, however, gives me the feeling of steady progress: I am convinced that theoretical physics is actual philosophy. It has revolutionized fundamental concepts, e.g., about space and time (relativity), about causality (quantum theory), and about substance and matter (atomistics), and it has taught us new methods of thinking (complementarity) which are applicable far beyond physics.
When you look at the calculation, it's amazing that every time you try to prove or disprove time travel, you've pushed Einstein's theory to the very limits where quantum effects must dominate. That's telling us that you really need a theory of everything to resolve this question. And the only candidate is string theory.
I did my masters in elementary particles. But the foundations of elementary particles is quantum theory and there were too many conceptual problems around quantum theory that I couldn't live with. So I decided I was going to work on the foundations of quantum theory. That's what I did my Ph.D on.
It is often stated that of all the theories proposed in this century, the silliest is quantum theory. In fact, some say that the only thing that quantum theory has going for it is that it is unquestionably correct.
In Darwin's theory, you just have to substitute 'mutations' for his 'slight accidental variations' (just as quantum theory substitutes 'quantum jump' for 'continuous transfer of energy'). In all other respects little change was necessary in Darwin's theory...
The very nature of the quantum theory ... forces us to regard the space-time coordination and the claim of causality, the union of which characterizes the classical theories, as complementary but exclusive features of the description, symbolizing the idealization of observation and description, respectively.
The Theory of Relativity confers an absolute meaning on a magnitude which in classical theory has only a relative significance: the velocity of light. The velocity of light is to the Theory of Relativity as the elementary quantum of action is to the Quantum Theory: it is its absolute core.
It is true that in quantum theory we cannot rely on strict causality. But by repeating the experiments many times, we can finally derive from the observations statistical distributions, and by repeating such series of experiments, we can arrive at objective statements concerning these distributions.
The most important single thing about string theory is that it's a highly mathematical theory, and the mathematics holds together in a very tight and consistent way. It contains in its basic structure both quantum mechanics and the theory of gravity. That's big news.
My training in science is actually one that is very critical of mechanistic science. I was trained in quantum theory which emerged at the turn of the last century. We are a whole century behind in absorbing the leaps that quantum theory made for the human mind.
Scientific realism in classical (i.e. pre-quantum) physics has remained compatible with the naive realism of everyday thinking on the whole; whereas it has proven impossible to find any consistent way to visualize the world underlying quantum theory in terms of our pictures in the everyday world. The general conclusion is that in quantum theory naive realism, although necessary at the level of observations, fails at the microscopic level.
If quantum communication and quantum computation are to flourish, a new information theory will have to be developed.
The problem is that replacement of Quantum Mechanics by Quantum Field Theory is still very demanding.
Every string theory that's been written down says the speed of light is universal. But other ideas about quantum gravity predict the speed of light has actually increased.
This site uses cookies to ensure you get the best experience. More info...
Got it!