A Quote by J. Robert Oppenheimer

Today, it is not only that our kings do not know mathematics, but our philosophers do not know mathematics and - to go a step further - our mathematicians do not know mathematics.
On foundations we believe in the reality of mathematics, but of course, when philosophers attack us with their paradoxes, we rush to hide behind formalism and say 'mathematics is just a combination of meaningless symbols,'... Finally we are left in peace to go back to our mathematics and do it as we have always done, with the feeling each mathematician has that he is working with something real. The sensation is probably an illusion, but it is very convenient.
In fact, the answer to the question "What is mathematics?" has changed several times during the course of history... It was only in the last twenty years or so that a definition of mathematics emerged on which most mathematicians agree: mathematics is the science of patterns.
All our surest statements about the nature of the world are mathematical statements, yet we do not know what mathematics "is"... and so we find that we have adapted a religion strikingly similar to many traditional faiths. Change "mathematics" to "God" and little else might seem to change. The problem of human contact with some spiritual realm, of timelessness, of our inability to capture all with language and symbol-all have their counterparts in the quest for the nature of Platonic mathematics.
The main duty of the historian of mathematics, as well as his fondest privilege, is to explain the humanity of mathematics, to illustrate its greatness, beauty and dignity, and to describe how the incessant efforts and accumulated genius of many generations have built up that magnificent monument, the object of our most legitimate pride as men, and of our wonder, humility and thankfulness, as individuals. The study of the history of mathematics will not make better mathematicians but gentler ones, it will enrich their minds, mellow their hearts, and bring out their finer qualities.
Mathematics alone make us feel the limits of our intelligence. For we can always suppose in the case of an experiment that it is inexplicable because we don't happen to have all the data. In mathematics we have all the data, brought together in the full light of demonstration, and yet we don't understand. We always come back to the contemplation of our human wretchedness. What force is in relation to our will, the impenetrable opacity of mathematics is in relation to our intelligence.
The traditional mathematician recognizes and appreciates mathematical elegance when he sees it. I propose to go one step further, and to consider elegance an essential ingredient of mathematics: if it is clumsy, it is not mathematics.
A Noah's Ark of mathematicians, their lives, loves, hard times, and madnesses, Loving and Hating Mathematics shows our community with all its warts as well as its triumphs. I especially liked the chapter on much-hated school mathematics, 'Almost All Children Left Behind.'
One of the big misapprehensions about mathematics that we perpetrate in our classrooms is that the teacher always seems to know the answer to any problem that is discussed. This gives students the idea that there is a book somewhere with all the right answers to all of the interesting questions, and that teachers know those answers. And if one could get hold of the book, one would have everything settled. That's so unlike the true nature of mathematics.
Mystery is an inescapable ingredient of mathematics. Mathematics is full of unanswered questions, which far outnumber known theorems and results. It's the nature of mathematics to pose more problems than it can solve. Indeed, mathematics itself may be built on small islands of truth comprising the pieces of mathematics that can be validated by relatively short proofs. All else is speculation.
It is almost as hard to define mathematics as it is to define economics, and one is tempted to fall back on the famous old definition attributed to Jacob Viner, "Economics is what economists do," and say that mathematics is what mathematicians do. A large part of mathematics deals with the formal relations of quantities or numbers.
I don't want to convince you that mathematics is useful. It is, but utility is not the only criterion for value to humanity. Above all, I want to convince you that mathematics is beautiful, surprising, enjoyable, and interesting. In fact, mathematics is the closest that we humans get to true magic. How else to describe the patterns in our heads that - by some mysterious agency - capture patterns of the universe around us? Mathematics connects ideas that otherwise seem totally unrelated, revealing deep similarities that subsequently show up in nature.
Do not lose your faith. A mighty fortress is our mathematics. Mathematics will rise to the challenge, as it always has.
The product of mathematics is clarity and understanding. Not theorems, by themselves. ... In short, mathematics only exists in a living community of mathematicians that spreads understanding and breathes life into ideas both old and new.
May not music be described as the mathematics of the sense, mathematics as music of the reason? The musician feels mathematics, the mathematician thinks music: music the dream, mathematics the working life.
So in the end it wasn't Gödel, it wasn't Turing, and it wasn't my results that are making mathematics go into an experimental mathematics direction, in a quasi-empirical direction. The reason why mathematicians are changing their working habits is the computer. I think that this is an excellent joke!
I like science and mathematics. When I say mathematics, I don't mean algebra or math in that sense, but the mathematics of things.
This site uses cookies to ensure you get the best experience. More info...
Got it!