A Quote by Kip Thorne

We're going to need a definitive quantum theory of gravity, which is part of a grand unified theory - it's the main missing piece. — © Kip Thorne
We're going to need a definitive quantum theory of gravity, which is part of a grand unified theory - it's the main missing piece.
One of the main successes of string theory is that it has been able to unify the general theory of relativity, which describes gravity, and quantum mechanics.
The most important single thing about string theory is that it's a highly mathematical theory, and the mathematics holds together in a very tight and consistent way. It contains in its basic structure both quantum mechanics and the theory of gravity. That's big news.
The Theory of Relativity confers an absolute meaning on a magnitude which in classical theory has only a relative significance: the velocity of light. The velocity of light is to the Theory of Relativity as the elementary quantum of action is to the Quantum Theory: it is its absolute core.
I did my masters in elementary particles. But the foundations of elementary particles is quantum theory and there were too many conceptual problems around quantum theory that I couldn't live with. So I decided I was going to work on the foundations of quantum theory. That's what I did my Ph.D on.
Combining quantum entanglement with wormholes yields mind boggling results about black holes. But I don't trust them until we have a theory of everything which can combine quantum effects with general relativity. i.e. we need to have a full blown string theory resolve this sticky question.
It is often stated that of all the theories proposed in this century, the silliest is quantum theory. In fact, some say that the only thing that quantum theory has going for it is that it is unquestionably correct.
I am not aware of any sensible theory of how classical gravity could interact with quantum matter, and I can't imagine how such a theory might work.
My work during the 1970s has been mainly concerned with the implications of the unified theory of weak and electromagnetic interactions, with the development of the related theory of strong interactions known as quantum chromodynamics, and with steps toward the unification of all interactions.
The revolution which began with the creation of quantum theory and relativity theory can only be finished with their unification into a single theory that can give us a single, comprehensive picture of nature.
In Darwin's theory, you just have to substitute 'mutations' for his 'slight accidental variations' (just as quantum theory substitutes 'quantum jump' for 'continuous transfer of energy'). In all other respects little change was necessary in Darwin's theory...
When you look at the calculation, it's amazing that every time you try to prove or disprove time travel, you've pushed Einstein's theory to the very limits where quantum effects must dominate. That's telling us that you really need a theory of everything to resolve this question. And the only candidate is string theory.
My training in science is actually one that is very critical of mechanistic science. I was trained in quantum theory which emerged at the turn of the last century. We are a whole century behind in absorbing the leaps that quantum theory made for the human mind.
I had two passions when I was a child. First was to learn about Einstein's theory and help to complete his dream of a unified theory of everything. That's my day job. I work in something called string theory. I'm one of the founders of the subject. We hope to complete Einstein's dream of a theory of everything.
The incomplete knowledge of a system must be an essential part of every formulation in quantum theory. Quantum theoretical laws must be of a statistical kind. To give an example: we know that the radium atom emits alpha-radiation. Quantum theory can give us an indication of the probability that the alpha-particle will leave the nucleus in unit time, but it cannot predict at what precise point in time the emission will occur, for this is uncertain in principle.
It is a remarkable fact that the second law of thermodynamics has played in the history of science a fundamental role far beyond its original scope. Suffice it to mention Boltzmann's work on kinetic theory, Planck's discovery of quantum theory or Einstein's theory of spontaneous emission, which were all based on the second law of thermodynamics.
If the theory accurately predicts what they [scientists] see, it confirms that it's a good theory. If they see something that the theory didn't lead them to believe, that's what Thomas Kuhn calls an anomaly. The anomaly requires a revised theory - and you just keep going through the cycle, making a better theory.
This site uses cookies to ensure you get the best experience. More info...
Got it!