A Quote by Martin Lindstrom

Where big data is all about seeking correlations - and thus to make incremental changes - small data is all about causations - seeking to understand the reasons why. — © Martin Lindstrom
Where big data is all about seeking correlations - and thus to make incremental changes - small data is all about causations - seeking to understand the reasons why.
Big data is great when you want to verify and quantify small data - as big data is all about seeking a correlation - small data about seeking the causation.
With too little data, you won't be able to make any conclusions that you trust. With loads of data you will find relationships that aren't real... Big data isn't about bits, it's about talent.
I'm going to say something rather controversial. Big data, as people understand it today, is just a bigger version of small data. Fundamentally, what we're doing with data has not changed; there's just more of it.
We get more data about people than any other data company gets about people, about anything - and it's not even close. We're looking at what you know, what you don't know, how you learn best. The big difference between us and other big data companies is that we're not ever marketing your data to a third party for any reason.
People think 'big data' avoids the problem of discrimination because you are dealing with big data sets, but, in fact, big data is being used for more and more precise forms of discrimination - a form of data redlining.
MapReduce has become the assembly language for big data processing, and SnapReduce employs sophisticated techniques to compile SnapLogic data integration pipelines into this new big data target language. Applying everything we know about the two worlds of integration and Hadoop, we built our technology to directly fit MapReduce, making the process of connectivity and large scale data integration seamless and simple.
Data isn't information. ... Information, unlike data, is useful. While there's a gulf between data and information, there's a wide ocean between information and knowledge. What turns the gears in our brains isn't information, but ideas, inventions, and inspiration. Knowledge-not information-implies understanding. And beyond knowledge lies what we should be seeking: wisdom.
The problem with data is that it says a lot, but it also says nothing. 'Big data' is terrific, but it's usually thin. To understand why something is happening, we have to engage in both forensics and guess work.
Big data is mostly about taking numbers and using those numbers to make predictions about the future. The bigger the data set you have, the more accurate the predictions about the future will be.
Let's look at lending, where they're using big data for the credit side. And it's just credit data enhanced, by the way, which we do, too. It's nothing mystical. But they're very good at reducing the pain points. They can underwrite it quicker using - I'm just going to call it big data, for lack of a better term: "Why does it take two weeks? Why can't you do it in 15 minutes?"
One [Big Data] challenge is how we can understand and use big data when it comes in an unstructured format.
The biggest mistake is an over-reliance on data. Managers will say if there are no data they can take no action. However, data only exist about the past. By the time data become conclusive, it is too late to take actions based on those conclusions.
This is where the world is going: direct access from anywhere to any type of data, whether it's a small piece of data or a small answer but a long algorithm to create that answer. The user doesn't care about this.
One of the myths about the Internet of Things is that companies have all the data they need, but their real challenge is making sense of it. In reality, the cost of collecting some kinds of data remains too high, the quality of the data isn't always good enough, and it remains difficult to integrate multiple data sources.
The first wave of the Internet was really about data transport. And we didn't worry much about how much power we were consuming, how much cooling requirements were needed in the data centers, how big the data center is in terms of real estate. Those were almost afterthoughts.
We use nearly 5 thousand different data points about you to craft and target a message. The data points are not just a representative model of you. The data points are about you, specifically.
This site uses cookies to ensure you get the best experience. More info...
Got it!