A Quote by Satya Nadella

I will talk about two sets of things. One is how productivity and collaboration are reinventing the nature of work, and how this will be very important for the global economy. And two, data. In other words, the profound impact of digital technology that stems from data and the data feedback loop.
Every company has messy data, and even the best of AI companies are not fully satisfied with their data. If you have data, it is probably a good idea to get an AI team to have a look at it and give feedback. This can develop into a positive feedback loop for both the IT and AI teams in any company.
The biggest mistake is an over-reliance on data. Managers will say if there are no data they can take no action. However, data only exist about the past. By the time data become conclusive, it is too late to take actions based on those conclusions.
MapReduce has become the assembly language for big data processing, and SnapReduce employs sophisticated techniques to compile SnapLogic data integration pipelines into this new big data target language. Applying everything we know about the two worlds of integration and Hadoop, we built our technology to directly fit MapReduce, making the process of connectivity and large scale data integration seamless and simple.
We get more data about people than any other data company gets about people, about anything - and it's not even close. We're looking at what you know, what you don't know, how you learn best. The big difference between us and other big data companies is that we're not ever marketing your data to a third party for any reason.
It is very important, to have a robust digital economy, that the citizens regain the trust in how their data are being processed and who can access them.
With too little data, you won't be able to make any conclusions that you trust. With loads of data you will find relationships that aren't real... Big data isn't about bits, it's about talent.
As a digital technology writer, I have had more than one former student and colleague tell me about digital switchers they have serviced through which calls and data are diverted to government servers or the big data algorithms they've written to be used on our e-mails by intelligence agencies.
People believe the best way to learn from the data is to have a hypothesis and then go check it, but the data is so complex that someone who is working with a data set will not know the most significant things to ask. That's a huge problem.
The first wave of the Internet was really about data transport. And we didn't worry much about how much power we were consuming, how much cooling requirements were needed in the data centers, how big the data center is in terms of real estate. Those were almost afterthoughts.
The technology, called near-field communication, involves a microchip that can send and receive data across very short distances, about four inches. Instead of swiping a credit card, you hold your phone near a reader and let the data zip between the two devices.
One of the myths about the Internet of Things is that companies have all the data they need, but their real challenge is making sense of it. In reality, the cost of collecting some kinds of data remains too high, the quality of the data isn't always good enough, and it remains difficult to integrate multiple data sources.
People think 'big data' avoids the problem of discrimination because you are dealing with big data sets, but, in fact, big data is being used for more and more precise forms of discrimination - a form of data redlining.
When dealing with data, scientists have often struggled to account for the risks and harms using it might inflict. One primary concern has been privacy - the disclosure of sensitive data about individuals, either directly to the public or indirectly from anonymised data sets through computational processes of re-identification.
Data dominates. If you've chosen the right data structures and organized things well, the algorithms will almost always be self-evident. Data structures, not algorithms, are central to programming.
As we become so visible in the digital world and leave an endless trail of data behind us, exactly who has our data and what they do with it becomes increasingly important.
In my view, our approach to global warming exemplifies everything that is wrong with our approach to the environment. We are basing our decisions on speculation, not evidence. Proponents are pressing their views with more PR than scientific data. Indeed, we have allowed the whole issue to be politicized-red vs blue, Republican vs Democrat. This is in my view absurd. Data aren't political. Data are data. Politics leads you in the direction of a belief. Data, if you follow them, lead you to truth.
This site uses cookies to ensure you get the best experience. More info...
Got it!