A Quote by Stanislaw Ulam

Do not lose your faith. A mighty fortress is our mathematics. Mathematics will rise to the challenge, as it always has. — © Stanislaw Ulam
Do not lose your faith. A mighty fortress is our mathematics. Mathematics will rise to the challenge, as it always has.
Mathematics alone make us feel the limits of our intelligence. For we can always suppose in the case of an experiment that it is inexplicable because we don't happen to have all the data. In mathematics we have all the data, brought together in the full light of demonstration, and yet we don't understand. We always come back to the contemplation of our human wretchedness. What force is in relation to our will, the impenetrable opacity of mathematics is in relation to our intelligence.
If you ask ... the man in the street ... the human significance of mathematics, the answer of the world will be, that mathematics has given mankind a metrical and computatory art essential to the effective conduct of daily life, that mathematics admits of countless applications in engineering and the natural sciences, and finally that mathematics is a most excellent instrumentality for giving mental discipline... [A mathematician will add] that mathematics is the exact science, the science of exact thought or of rigorous thinking.
Mystery is an inescapable ingredient of mathematics. Mathematics is full of unanswered questions, which far outnumber known theorems and results. It's the nature of mathematics to pose more problems than it can solve. Indeed, mathematics itself may be built on small islands of truth comprising the pieces of mathematics that can be validated by relatively short proofs. All else is speculation.
Today, it is not only that our kings do not know mathematics, but our philosophers do not know mathematics and - to go a step further - our mathematicians do not know mathematics.
On foundations we believe in the reality of mathematics, but of course, when philosophers attack us with their paradoxes, we rush to hide behind formalism and say 'mathematics is just a combination of meaningless symbols,'... Finally we are left in peace to go back to our mathematics and do it as we have always done, with the feeling each mathematician has that he is working with something real. The sensation is probably an illusion, but it is very convenient.
May not music be described as the mathematics of the sense, mathematics as music of the reason? The musician feels mathematics, the mathematician thinks music: music the dream, mathematics the working life.
I like science and mathematics. When I say mathematics, I don't mean algebra or math in that sense, but the mathematics of things.
Given the brief - and generally misleading - exposure most people have to mathematics at school, raising the public awareness of mathematics will always be an uphill battle.
But there is another reason for the high repute of mathematics: it is mathematics that offers the exact natural sciences a certain measure of security which, without mathematics, they could not attain.
Some people think that mathematics is a serious business that must always be cold and dry; but we think mathematics is fun, and we aren't ashamed to admit the fact. Why should a strict boundary line be drawn between work and play? Concrete mathematics is full of appealing patterns; the manipulations are not always easy, but the answers can be astonishingly attractive.
Mathematics has two faces: it is the rigorous science of Euclid, but it is also something else. Mathematics presented in the Euclidean way appears as a systematic, deductive science; but mathematics in the making appears as an experimental, inductive science. Both aspects are as old as the science of mathematics itself.
The main duty of the historian of mathematics, as well as his fondest privilege, is to explain the humanity of mathematics, to illustrate its greatness, beauty and dignity, and to describe how the incessant efforts and accumulated genius of many generations have built up that magnificent monument, the object of our most legitimate pride as men, and of our wonder, humility and thankfulness, as individuals. The study of the history of mathematics will not make better mathematicians but gentler ones, it will enrich their minds, mellow their hearts, and bring out their finer qualities.
Applied mathematics will always need pure mathematics just as anteaters will always need ants.
In fact, the answer to the question "What is mathematics?" has changed several times during the course of history... It was only in the last twenty years or so that a definition of mathematics emerged on which most mathematicians agree: mathematics is the science of patterns.
One may say that mathematics talks about the things which are of no concern to men. Mathematics has the inhuman quality of starlight - brilliant, sharp but cold ... thus we are clearest where knowledge matters least: in mathematics, especially number theory.
Mathematics is often defined as the science of space and number . . . it was not until the recent resonance of computers and mathematics that a more apt definition became fully evident: mathematics is the science of patterns.
This site uses cookies to ensure you get the best experience. More info...
Got it!