Цитата Джона Аллена Паулоса

Данные, данные повсюду, но ни одной мысли, чтобы подумать. — © Джон Аллен Паулос
Данные, данные повсюду, но ни мысли, ни мысли.
Компьютер здесь, чтобы остаться, поэтому он должен находиться на своем месте в качестве инструмента и раба, иначе мы станем учениками чародея, с данными-данными повсюду и без мысли думать.
Добро пожаловать в век информации. Данные, данные повсюду, но никто ничего не знает.
Люди думают, что «большие данные» позволяют избежать проблемы дискриминации, потому что вы имеете дело с наборами больших данных, но на самом деле большие данные используются для все более и более точных форм дискриминации — формы «красной черты» данных.
Самая большая ошибка — это чрезмерная зависимость от данных. Менеджеры скажут, что если нет данных, они не могут предпринимать никаких действий. Однако данные существуют только о прошлом. К тому времени, когда данные станут окончательными, будет уже слишком поздно предпринимать действия, основанные на этих выводах.
Информации так много, что наша способность сосредоточиться на любой ее части прерывается другой информацией, так что мы купаемся в информации, но с трудом усваиваем или анализируем ее. Данные прерываются другими данными до того, как мы подумаем о первом раунде, и одновременное рассмотрение трех потоков данных может быть способом не думать ни об одном из них.
Один из мифов об Интернете вещей заключается в том, что у компаний есть все данные, которые им нужны, но их реальная проблема состоит в том, чтобы разобраться в них. В действительности стоимость сбора некоторых видов данных остается слишком высокой, качество данных не всегда достаточно хорошим, и по-прежнему сложно интегрировать несколько источников данных.
Специалист по обработке и анализу данных — это уникальное сочетание навыков, которые могут как раскрыть понимание данных, так и рассказать фантастическую историю с помощью данных.
Данные! данные! данные! — нетерпеливо воскликнул он. — Я не могу делать кирпичи без глины.
Выйдите и соберите данные, и вместо того, чтобы получить ответ, просто посмотрите на данные и посмотрите, говорят ли они вам о чем-нибудь. Когда нам позволяют делать это с компаниями, это почти волшебство.
Предубеждения и слепые пятна существуют в больших данных так же, как и в индивидуальном восприятии и опыте. Тем не менее, существует проблематичное убеждение, что большие данные всегда являются лучшими данными и что корреляция так же хороша, как и причинно-следственная связь.
Каждый раз, когда ученые не согласны, это происходит потому, что у нас недостаточно данных. Затем мы можем договориться о том, какие данные нужно получить; получаем данные; и данные решают проблему. Либо я прав, либо ты прав, либо мы оба не правы. И мы идем дальше. Такого разрешения конфликтов не существует ни в политике, ни в религии.
На мой взгляд, наш подход к глобальному потеплению иллюстрирует все недостатки нашего подхода к окружающей среде. Мы основываем наши решения на предположениях, а не на доказательствах. Сторонники настаивают на своих взглядах больше пиаром, чем научными данными. Действительно, мы позволили политизировать весь вопрос — красные против синих, республиканцы против демократов. Это на мой взгляд абсурд. Данные не являются политическими. Данные есть данные. Политика ведет вас в направлении веры. Данные, если вы будете следовать им, приведут вас к истине.
Научные данные не берутся для музейных целей; они берутся за основу для совершения чего-либо. Если с данными ничего не поделаешь, то и собирать их бесполезно. Конечной целью сбора данных является предоставление основы для действий или рекомендаций для действий. Промежуточным этапом между сбором данных и действием является прогнозирование.
TIA использовали реальные пользователи, работающие с реальными данными — иностранными данными. Данные, конфиденциальность которых не является проблемой.
Люди считают, что лучший способ извлечь уроки из данных — это выдвинуть гипотезу, а затем проверить ее, но данные настолько сложны, что тот, кто работает с набором данных, не будет знать, что нужно спросить. Это огромная проблема.
Имея слишком мало данных, вы не сможете сделать никаких выводов, которым вы доверяете. С большим количеством данных вы обнаружите отношения, которые не являются реальными... Большие данные — это не биты, это талант.
Этот сайт использует файлы cookie, чтобы обеспечить вам максимальное удобство. Больше информации...
Понятно!