Top 50 Euclid Quotes & Sayings

Explore popular Euclid quotes.
Last updated on November 8, 2024.
Like a young heir, come a little prematurely to a large inheritance, we shall wanton and run riot until we have brought our reputation to the brink of ruin, and then, like him, shall have to labor with the current of opinion, when COMPELLED perhaps, to do what prudence and common policy pointed out, as plain as any problem in Euclid, in the first instance.
I would say, if you like, that the party is like an out-moded mathematics...that is to say, the mathematics of Euclid. We need to invent a non-Euclidian mathematics with respect to political discipline.
If Euclid's point, though incapable of being drawn by any human agency, has an imperishable value, my picture has its own for mankind to live. — © Mahatma Gandhi
If Euclid's point, though incapable of being drawn by any human agency, has an imperishable value, my picture has its own for mankind to live.
From Euclid to Newton there were straight lines. The modern age analyzes the wavers.
At the age of eleven, I began Euclid, with my brother as my tutor. This was one of the great events of my life, as dazzling as first love. I had not imagined there was anything so delicious in the world. From that moment until I was thirty-eight, mathematics was my chief interest and my chief source of happiness.
The science of the church is neglected for the study of geometry, and they lose sight of Heaven while they are employed in measuring the earth. Euclid is perpetually in their hands. Aristotle and Theophrastus are the objects of their admiration; and they express an uncommon reverence for the works of Galen. Their errors are derived from the abuse of the arts and sciences of the infidels, and they corrupt the simplicity of the gospel by the refinements of human reason.
Euclid 's manner of exposition, progressing relentlessly from the data to the unknown and from the hypothesis to the conclusion, is perfect for checking the argument in detail but far from being perfect for making understandable the main line of the argument.
The work of mathematicians on 'pure' problems has often yielded ideas that have waited to be rediscovered by physicists. The work of Euclid, Apollonius and Archimedes on ellipses would be used centuries later by Kepler for his theory of planetary motion.
In geometry I find certain imperfections which I hold to be the reason why this science, apart from transition into analytics, can as yet make no advance from that state in which it came to us from Euclid. As belonging to these imperfections, I consider the obscurity in the fundamental concepts of the geometrical magnitudes and in the manner and method of representing the measuring of these magnitudes, and finally the momentous gap in the theory of parallels, to fill which all efforts of mathematicians have so far been in vain.
Detection is, or ought to be, an exact science, and should be treated in the same cold and unemotional manner. You have attempted to tinge it with romanticism, which produces much the same effect as if you worked a love-story or an elopement into the fifth proposition of Euclid.
Did chemistry theorems exist? No: therefore you had to go further, not be satisfied with the quia, go back to the origins, to mathematics and physics. The origins of chemistry were ignoble, or at least equivocal: the dens of the alchemists, their abominable hodgepodge of ideas and language, their confessed interest in gold, their Levantine swindles typical of charlatans and magicians; instead, at the origin of physics lay the strenuous clarity of the West-Archimedes and Euclid.
As to writing another book on geometry [to replace Euclid] the middle ages would have as soon thought of composing another New Testament.
The once-surprising existence of non-Euclidean models of Euclid's first four axioms can be seen as a sort of mathematical joke.
Euclid taught me that without assumptions there is no proof. Therefore, in any argument, examine the assumptions.
Euclid alone has looked on Beauty bare. Let all who prate of Beauty hold their peace, And lay them prone upon the earth and cease To ponder on themselves, the while they stare At nothing, intricately drawn nowhere.
The anceints devoted a lifetime to the study of arithmetic; it required days to extract a square root or to multiply two numbers together. Is there any harm in skipping all that, in letting the school boy learn multiplication sums, and in starting his more abstract reasoning at a more advanced point. Where would be the harm in letting the boy assume the truth of many propositions of the first four books of Euclid, letting him assume their truth partly by faith, partly by trial?
Euclid alone Has looked on Beauty bare. Fortunate they Who, though once only and then but far away, Have heard her massive sandal set on stone.
Abraham Lincoln had great clarity of mind and expression, and he worked to make it clearer -reading Euclid in his early 30s to train his mind.
The primes are the raw material out of which we have to build arithmetic, and Euclid's theorem assures us that we have plenty of material for the task.
[T]he 47th proposition in Euclid might now be voted down with as much ease as any proposition in politics; and therefore if Lord Hawkesbury hates the abstract truths of science as much as he hates concrete truth in human affairs, now is his time for getting rid of the multiplication table, and passing a vote of censure upon the pretensions of the hypotenuse.
Euclid for children is barbarous.
Euclid Alone Has Looked on Beauty Bare.
The sacred writings excepted, no Greek has been so much read and so variously translated as Euclid.
The cowboys have a way of trussing up a steer or a pugnacious bronco which fixes the brute so that it can neither move nor think. This is the hog-tie, and it is what Euclid did to geometry.
I told myself, "Lincoln, you can never make a lawyer if you do not understand what demonstrate means." So I left my situation in Springfield, went home to my father's house, and stayed there till I could give any proposition in the six books of Euclid at sight. I then found out what "demonstrate" means, and went back to my law studies.
I have given up newspapers in exchange for Tacitus and Thucydides, for Newton and Euclid; and I find myself much the happier.
About Thomas Hobbes: He was 40 years old before he looked on geometry; which happened accidentally. Being in a gentleman's library, Euclid's Elements lay open, and "twas the 47 El. libri I" [Pythagoras' Theorem]. He read the proposition "By God", sayd he, "this is impossible:" So he reads the demonstration of it, which referred him back to such a proposition; which proposition he read. That referred him back to another, which he also read. Et sic deinceps, that at last he was demonstratively convinced of that truth. This made him in love with geometry.
Mathematics has two faces: it is the rigorous science of Euclid, but it is also something else. Mathematics presented in the Euclidean way appears as a systematic, deductive science; but mathematics in the making appears as an experimental, inductive science. Both aspects are as old as the science of mathematics itself.
The early study of Euclid made me a hater of geometry.
It is curious to observe the triumph of slight incidents over the mind; and what incredible weight they have in forming and governing our opinions, both of men and things, that trifles light as air shall waft a belief into the soul, and plant it so immovable within it, that Euclid's demonstrations, could they be brought to batter it in breach, should not all have power to overthrow it!
We think of Euclid as of fine ice; we admire Newton as we admire the peak of Teneriffe. Even the intensest labors, the most remote triumphs of the abstract intellect, seem to carry us into a region different from our own-to be in a terra incognita of pure reasoning, to cast a chill on human glory.
At the age of eleven, I began Euclid, with my brother as my tutor. ... I had not imagined that there was anything so delicious in the world. After I had learned the fifth proposition, my brother told me that it was generally considered difficult, but I had found no difficulty whatsoever. This was the first time it had dawned on me that I might have some intelligence.
I have in later years taken to Euclid, Whitehead, Bertrand Russell, in an elemental way. — © Carl Sandburg
I have in later years taken to Euclid, Whitehead, Bertrand Russell, in an elemental way.
I was interviewed on the Israeli radio for five minutes and I said that more than 2000 years ago, Euclid proved that there are infinitely many primes. Immediately the host interrupted me and asked, 'Are there still infinitely many primes?'
Euclid avoids it [the treatment of the infinite]; in modern mathematics it is systematically introduced, for only then is generality obtained.
Euclid manages to obtain a rigorous proof without ever dealing with infinity, by reducing the problem [of the infinitude of primes] to the study of finite numbers. This is exactly what contemporary mathematical analysis does.
I claim that many patterns of Nature are so irregular and fragmented, that, compared with Euclid - a term used in this work to denote all of standard geometry - Nature exhibits not simply a higher degree but an altogether different level of complexity ... The existence of these patterns challenges us to study these forms that Euclid leaves aside as being "formless," to investigate the morphology of the "amorphous."
Four circles to the kissing come, The smaller are the benter. The bend is just the inverse of The distance from the centre. Though their intrigue left Euclid dumb There's now no need for rule of thumb. Since zero bend's a dead straight line And concave bends have minus sign, The sum of squares of all four bends Is half the square of their sum.
Every night as I gazed up at the window I said softly to myself the word paralysis. It had always sounded strangely in my ears, like the word gnomon in the Euclid and the word simony in the Catechism. But now it sounded to me like the name of some maleficent and sinful being. It filled me with fear, and yet I longed to be nearer to it and to look upon its deadly work.
Detest it as lewd intercourse, it can deprive you of all your leisure, your health, your rest, and the whole happiness of your life. Having himself spent a lifetime unsuccessfully trying to prove Euclid's postulate that parallel lines do not meet, Farkas discouraged his son János from any further attempt.
Regular geometry, the geometry of Euclid, is concerned with shapes which are smooth, except perhaps for corners and lines, special lines which are singularities, but some shapes in nature are so complicated that they are equally complicated at the big scale and come closer and closer and they don't become any less complicated.
It is shocking that young people should be addling their brains over mere logical subtleties in Euclid's Elements, trying to understand the proof of one obvious fact in terms of something equally .. obvious.
Blaise Pascal used to mark with charcoal the walls of his playroom, seeking a means of making a circle perfectly round and a triangle whose sides and angle were all equal. He discovered these things for himself and then began to seek the relationship which existed between them. He did not know any mathematical terms and so he made up his own. Using these names he made axioms and finally developed perfect demonstrations, until he had come to the thirty-second proposition of Euclid.
The new painters do not propose, any more than did their predecessors, to be geometers. But it may be said that geometry is to the plastic arts what grammar is to the art of the writer. Today, scholars no longer limit themselves to the three dimensions of Euclid. The painters have been lead quite naturally, one might say by intuition, to preoccupy themselves with the new possibilities of spatial measurement which, in the language of the modern studios, are designated by the term fourth dimension.
It would be foolish to give credit to Euclid for pangeometrical conceptions; the idea of geometry deifferent from the common-sense one never occurred to his mind. Yet, when he stated the fifth postulate, he stood at the parting of the ways. His subconscious prescience is astounding. There is nothing comperable to it in the whole history of science.
Reductio ad absurdum, which Euclid loved so much, is one of a mathematician's finest weapons. It is a far finer gambit than any chess play: a chess player may offer the sacrifice of a pawn or even a piece, but a mathematician offers the game.
Let me tell you how at one time the famous mathematician Euclid became a physician. It was during a vacation, which I spent in Prague as I most always did, when I was attacked by an illness never before experienced, which manifested itself in chilliness and painful weariness of the whole body. In order to ease my condition I took up Euclid's Elements and read for the first time his doctrine of ratio, which I found treated there in a manner entirely new to me. The ingenuity displayed in Euclid's presentation filled me with such vivid pleasure, that forthwith I felt as well as ever.
The existence of these patterns [fractals] challenges us to study forms that Euclid leaves aside as being formless, to investigate the morphology of the amorphous. Mathematicians have disdained this challenge, however, and have increasingly chosen to flee from nature by devising theories unrelated to anything we can see or feel.
Euclid alone has looked on Beauty bare. Let all who prate of Beauty hold their peace, And lay them prone upon the earth and cease To ponder on themselves, the while they stare At nothing, intricately drawn nowhere In shapes of shifting lineage; let geese Gabble and hiss, but heroes seek release From dusty bondage into luminous air. O blinding hour, O holy, terrible day, When first the shaft into his vision shone Of light anatomized! Euclid alone Has looked on Beauty bare. Fortunate they Who, though once only and then but far away, Have heard her massive sandal set on stone.
My venture investing career has three phases, all roughly 6-8 years long. The first, at Euclid, was software to Internet. The second, at Flatiron, was Internet to bubble. And the third, at USV, has been web 2 to mobile. I have always used a new firm to denote a new investment phase for me. Throw away the old. Start with the new.
This site uses cookies to ensure you get the best experience. More info...
Got it!