Top 1200 Mathematics By Mathematicians Quotes & Sayings - Page 2

Explore popular Mathematics By Mathematicians quotes.
Last updated on April 20, 2025.
. . . the membership relation for sets can often be replaced by the composition operation for functions. This leads to an alternative foundation for Mathematics upon categories -- specifically, on the category of all functions. Now much of Mathematics is dynamic, in that it deals with morphisms of an object into another object of the same kind. Such morphisms (like functions) form categories, and so the approach via categories fits well with the objective of organizing and understanding Mathematics. That, in truth, should be the goal of a proper philosophy of Mathematics.
The history of mathematics, lacking the guidance of philosophy, [is] blind, while the philosophy of mathematics, turning its back on the most intriguing phenomena in the history of mathematics, is empty.
I work with a lot of mathematicians, and one thing I notice about them is that they are not particularly fast with numbers; in fact some of them are rather slow. This is not a bad thing; they are slow because they think deeply and carefully about mathematics.
Mathematics is much more than computation with pencil and a paper and getting answers to routine exercises. In fact, it can easily be argued that computation, such as doing long division, is not mathematics at all. Calculators can do the same thing and calculators can only calculate they cannot do mathematics.
It appears that the solution of the problem of time and space is reserved to philosophers who, like Leibniz, are mathematicians, or to mathematicians who, like Einstein, are philosophers.
[I was advised] to read Jordan's 'Cours d'analyse'; and I shall never forget the astonishment with which I read that remarkable work, the first inspiration for so many mathematicians of my generation, and learnt for the first time as I read it what mathematics really meant.
Mathematics is the most exact science, and its conclusions are capable of absolute proof. But this is so only because mathematics does not attempt to draw absolute conclusions. All mathematical truths are relative, conditional. In E. T. Bell Men of Mathematics, New York: Simona and Schuster, 1937.
One may say that mathematics talks about the things which are of no concern to men. Mathematics has the inhuman quality of starlight - brilliant, sharp but cold ... thus we are clearest where knowledge matters least: in mathematics, especially number theory.
One of the chief triumphs of modern mathematics consists in having discovered what mathematics really is. — © Bertrand Russell
One of the chief triumphs of modern mathematics consists in having discovered what mathematics really is.
Life is good for only two things, discovering mathematics and teaching mathematics.
To criticize mathematics for its abstraction is to miss the point entirely. Abstraction is what makes mathematics work. If you concentrate too closely on too limited an application of a mathematical idea, you rob the mathematician of his most important tools: analogy, generality, and simplicity. Mathematics is the ultimate in technology transfer.
Mathematicians have never been in full agreement on their science, though it is said to be the science of self-evident verities -- absolute, indisputable and definitive. They have always been in controversy over developing aspects of mathematics, and they have always considered their own age to be in a period of crisis.
I don't want to convince you that mathematics is useful. It is, but utility is not the only criterion for value to humanity. Above all, I want to convince you that mathematics is beautiful, surprising, enjoyable, and interesting. In fact, mathematics is the closest that we humans get to true magic. How else to describe the patterns in our heads that - by some mysterious agency - capture patterns of the universe around us? Mathematics connects ideas that otherwise seem totally unrelated, revealing deep similarities that subsequently show up in nature.
Some people think that mathematics is a serious business that must always be cold and dry; but we think mathematics is fun, and we aren't ashamed to admit the fact. Why should a strict boundary line be drawn between work and play? Concrete mathematics is full of appealing patterns; the manipulations are not always easy, but the answers can be astonishingly attractive.
Mathematics knows no races or geographic boundaries; for mathematics, the cultural world is one country.
I knew a lot of black scientists, engineers, and mathematicians, and female mathematicians and engineers, women of all backgrounds. So this idea that anyone could be an engineer, a mathematician, or whatever, was something that I had grown up with and thought was really normal.
The first and foremost duty of the high school in teaching mathematics is to emphasize methodical work in problem solving...The teacher who wishes to serve equally all his students, future users and nonusers of mathematics, should teach problem solving so that it is about one-third mathematics and two-thirds common sense.
Eugene Wigner wrote a famous essay on the unreasonable effectiveness of mathematics in natural sciences. He meant physics, of course. There is only one thing which is more unreasonable than the unreasonable effectiveness of mathematics in physics, and this is the unreasonable ineffectiveness of mathematics in biology.
The mathematicians have been very much absorbed with finding the general solution of algebraic equations, and several of them have tried to prove the impossibility of it. However, if I am not mistaken, they have not as yet succeeded. I therefore dare hope that the mathematicians will receive this memoir with good will, for its purpose is to fill this gap in the theory of algebraic equations.
Like musicians who can read and write complicated scores in a world without sounds, for us mathematics is a source of delight, excitement, and even controversy which are hard to share with non mathematicians. In our small micro-cosmos we should ever seek the right balance between competition and solidarity, criticism and empathy, exclusion and inclusion.
There is no thing as a man who does not create mathematics and yet is a fine mathematics teacher. Textbooks, course material-these do not approach in importance the communication of what mathematics is really about, of where it is going, and of where it currently stands with respect to the specific branch of it being taught. What really matters is the communication of the spirit of mathematics. It is a spirit that is active rather than contemplative-a spirit of disciplined search for adventures of the intellect. Only as adventurer can really tell of adventures.
What exactly is mathematics? Many have tried but nobody has really succeeded in defining mathematics; it is always something else.
Even the greatest mathematicians, the ones that we would put into our mythology of great mathematicians, had to do a great deal of leg work in order to get to the solution in the end.
Poincaré [was] the last man to take practically all mathematics, pure and applied, as his province. ... Few mathematicians have had the breadth of philosophic vision that Poincaré had, and none in his superior in the gift of clear exposition.
The mathematical fraternity is a little like a self-perpetuating priesthood. The mathematicians of today teach the mathematicians of tomorrow and, in effect, decide whom to admit to the priesthood.
Mathematics has two faces: it is the rigorous science of Euclid, but it is also something else. Mathematics presented in the Euclidean way appears as a systematic, deductive science; but mathematics in the making appears as an experimental, inductive science. Both aspects are as old as the science of mathematics itself.
How happy is the lot of the mathematician! He is judged solely by his peers, and the standard is so high that no colleague or rival can ever win a reputation he does not deserve. No cashier writes a letter to the press complaining about the incomprehensibility of Modern Mathematics and comparing it unfavorably with the good old days when mathematicians were content to paper irregularly shaped rooms and fill bathtubs without closing the waste pipe.
It is impossible to overstate the imporance of problems in mathematics. It is by means of problems that mathematics develops and actually lifts itself by its own bootstraps... Every new discovery in mathematics, results from an attempt to solve some problem.
Everybody in mathematics had given up for 100 years or 200 years the idea that you could from pictures, from looking at pictures, find new ideas. That was the case long ago in the Middle Ages, in the Renaissance, in later periods, but then mathematicians had become very abstract.
As far as I know, Clifford Pickover is the first mathematician to write a book about areas where math and theology overlap. Are there mathematical proofs of God? Who are the great mathematicians who believed in a deity? Does numerology lead anywhere when applied to sacred literature? Pickover covers these and many other off-trail topics with his usual verve, humor, and clarity. And along the way the reader will learn a great deal of serious mathematics.
It is amusing to discover, in the twentieth century, that the quarrels between two lovers, two mathematicians, two nations, two economic systems, usually assumed insoluble in a finite period should exhibit one mechanism, the semantic mechanism of identification - the discovery of which makes universal agreement possible, in mathematics and in life.
The broader the chess player you are, the easier it is to be competitive, and the same seems to be true of mathematics - if you can find links between different branches of mathematics, it can help you resolve problems. In both mathematics and chess, you study existing theory and use that to go forward.
On foundations we believe in the reality of mathematics, but of course, when philosophers attack us with their paradoxes, we rush to hide behind formalism and say 'mathematics is just a combination of meaningless symbols,'... Finally we are left in peace to go back to our mathematics and do it as we have always done, with the feeling each mathematician has that he is working with something real. The sensation is probably an illusion, but it is very convenient.
One cannot inquire into the foundations and nature of mathematics without delving into the question of the operations by which the mathematical activity of the mind is conducted. If one failed to take that into account, then one would be left studying only the language in which mathematics is represented rather than the essence of mathematics.
[Mathematics] is security. Certainty. Truth. Beauty. Insight. Structure. Architecture. I see mathematics, the part of human knowledge that I call mathematics, as one thing - one great, glorious thing. Whether it is differential topology, or functional analysis, or homological algebra, it is all one thing. ... They are intimately interconnected, they are all facets of the same thing. That interconnection, that architecture, is secure truth and is beauty. That's what mathematics is to me.
In mathematics I can report no deficiency, except it be that men do not sufficiently understand the excellent use of Pure Mathematics.
Most of all, a good maths education encourages students to embrace difficult problems, not shy away from them. In my opinion, the problem is that most UK secondary schools don't stretch good mathematicians and therefore fail to turn them into excellent mathematicians.
... there are those who believe that mathematics can sustain itself and grow without any further contact with anything outside itself, and those who believe that nature is still and always will be one of the main (if not the main) sources of mathematical inspiration. The first group is identified as "pure mathematicians" (though "purist" would be more adequate) while the second is, with equal inadequacy, referred to as "applied".
I was fortunate to find an extraordinary mathematics and applied mathematics program in Toronto.
We decided that 'trivial' means 'proved'. So we joked with the mathematicians: We have a new theorem- that mathematicians can prove only trivial theorems, because every theorem that's proved is trivial.
The only way to learn mathematics is to do mathematics. That tenet is the foundation of the do-it-yourself, Socratic, or Texas method.
Do not lose your faith. A mighty fortress is our mathematics. Mathematics will rise to the challenge, as it always has.
Politics is not an exact science. That's why in school I loved mathematics. Everything in mathematics was clear to me.
I am persuaded that this method [for calculating the volume of a sphere] will be of no little service to mathematics. For I foresee that once it is understood and established, it will be used to discover other theorems which have not yet occurred to me, by other mathematicians, now living or yet unborn.
A typical mathematician does not actively try to be useful. Individual mathematicians are motivated primarily by a subtle mixture of ambition and intellectual curiosity, and not by a wish to benefit society, nevertheless, mathematics as a whole does benefit society.
The bottom line for mathematicians is that the architecture has to be right. In all the mathematics that I did, the essential point was to find the right architecture. It's like building a bridge. Once the main lines of the structure are right, then the details miraculously fit. The problem is the overall design.
Whenever I want to represent or depict the official version, I will refer to them as 'mathematicians' or 'mathematical physicists' or idiots or something like that. There are no physicists in mainstream 'Physics.' From Newton to Einstein to Hawking, they are all just mathematicians as far as Science and Physics are concerned.
I don't think that everyone should become a mathematician, but I do believe that many students don't give mathematics a real chance. I did poorly in math for a couple of years in middle school; I was just not interested in thinking about it. I can see that without being excited mathematics can look pointless and cold. The beauty of mathematics only shows itself to more patient followers.
It was as though applied mathematics was my spouse, and pure mathematics was my secret lover. — © Edward Frenkel
It was as though applied mathematics was my spouse, and pure mathematics was my secret lover.
Music is mathematics, the mathematics of listening, mathematics for the ears.
Srinivasa Ramanujan was the strangest man in all of mathematics, probably in the entire history of science. He has been compared to a bursting supernova, illuminating the darkest, most profound corners of mathematics, before being tragically struck down by tuberculosis at the age of 33, like Riemann before him. Working in total isolation from the main currents of his field, he was able to rederive 100 years' worth of Western mathematics on his own. The tragedy of his life is that much of his work was wasted rediscovering known mathematics.
Most people have some appreciation of mathematics, just as most people can enjoy a pleasant tune; and there are probably more people really interested in mathematics than in music. Appearances suggest the contrary, but there are easy explanations. Music can be used to stimulate mass emotion, while mathematics cannot; and musical incapacity is recognized (no doubt rightly) as mildly discreditable, whereas most people are so frightened of the name of mathematics that they are ready, quite unaffectedly, to exaggerate their own mathematical stupidity
Democracy can't work. Mathematicians, peasants, and animals, that's all there is - so democracy, a theory based on the assumption that mathematicians and peasants are equal, can never work. Wisdom is not additive; its maximum is that of the wisest man in a given group.
Philosophers and psychiatrists should explain why it is that we mathematicians are in the habit of systematically erasing our footsteps. Scientists have always looked askance at this strange habit of mathematicians, which has changed little from Pythagoras to our day.
We in science are spoiled by the success of mathematics. Mathematics is the study of problems so simple that they have good solutions
If you ask ... the man in the street ... the human significance of mathematics, the answer of the world will be, that mathematics has given mankind a metrical and computatory art essential to the effective conduct of daily life, that mathematics admits of countless applications in engineering and the natural sciences, and finally that mathematics is a most excellent instrumentality for giving mental discipline... [A mathematician will add] that mathematics is the exact science, the science of exact thought or of rigorous thinking.
Mathematics is often defined as the science of space and number . . . it was not until the recent resonance of computers and mathematics that a more apt definition became fully evident: mathematics is the science of patterns.
We in science are spoiled by the success of mathematics. Mathematics is the study of problems so simple that they have good solutions.
I would say, if you like, that the party is like an out-moded mathematics...that is to say, the mathematics of Euclid. We need to invent a non-Euclidian mathematics with respect to political discipline.
It was not so much that I was doing mathematics, but rather that mathematics had taken possession of me.
This site uses cookies to ensure you get the best experience. More info...
Got it!